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Abstract: To date, there have been few quasi-experimental efforts to evaluate the impact of refugee 
camps on host landscapes. Yet many stakeholders believe refugee camps lead to deforestation in 
nearby areas. I use data on camp locations and years of operation as well as secondary geospatial 
data to produce a high-resolution panel dataset of 0.01° tiles. My difference-in-difference 
specification with tile fixed effects exploits variation in camp openings and tile proximity to camps. 
F-tests on event study pre-trends provide support for the satisfaction of parallel trends prior to camp 
exposure. I find that within the rainforest biome, camps are associated with a small reduction in 
extensive margin forest loss (i.e., land clearing) and a small increase in intensive margin forest loss 
(i.e., gradual reductions in canopy cover). In the grasslands biome, camps lead to small increases in 
forest loss at the intensive margin but have no impact on the extensive margin. 
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1. Introduction 
 

In 2019, there were an estimated 29.4 million refugees in the world, and one-quarter of this 

population resided in sub-Saharan Africa (SSA) (UNHCR, 2019). As of 2013, about 40% of 

refugees in SSA were required to live in planned refugee camps, where they receive humanitarian 

assistance (Verwimp and Maystadt, 2015). Academic attention towards refugees has increased 

considerably in recent years, with many scholars seeking to understand whether refugee camps or 

out-of-camp refugee populations have any impact on the hosting country (Maystadt et al., 2019; 

Verme and Schuettler, 2021). Although the impact of refugee populations on host communities has 

been a common topic of inquiry, their impact on host landscapes remains understudied. Despite 

limited evidence, many stakeholders in refugee hosting believe that refugee camp residents fuel 

deforestation in the area around the camp. For example, UNHCR documentation claims that refugee 

reliance on firewood is “a main driver of forest degradation and deforestation” in displacement 

settings  (UNHCR and FAO, 2018). 

  This paper takes a spatially explicit, quasi-experimental approach to study deforestation in 

response to camp openings in sub-Saharan Africa.1  My objective is to evaluate whether tree canopy 

 
1 I use the Food and Agriculture Organization’s definition of deforestation and define the 
phenomenon as “the conversion of forest to another land use or the long-term reduction of the tree 
canopy cover below the minimum 10% threshold.” This is not the same as forest degradation, which 
the FAO characterizes as “changes within the forest which negatively affect the structure or function 
of the stand or site, and thereby lower the capacity to supply products and/or services” (FAO, 2000). 
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cover declines in response to camp openings and to determine the distances from the camps at which 

these losses manifest.  

   Past economic research suggests that camps could stimulate deforestation through several 

channels. Population-driven productivity growth (Alix-Garcia et al., 2018) may result in an upward 

movement along the environmental Kuznets curve (Foster and Rosenzweig, 2003), especially if 

higher food demand leads to land clearing for agricultural expansion. The resulting environmental 

damages may be highly concentrated around camp areas in the absence of sufficient transportation 

infrastructure (Alix-Garcia et al., 2013). But population growth does not always result in forest loss 

(Cropper and Griffiths, 1994), as these processes will vary based on differences in country policy 

(Scrieciu, 2007).  

  Moreover, demand for fuelwood in the camp may raise the returns to harvesting and selling 

firewood (for hosts and refugees), resulting in more forest products extracted. Evidence suggests that 

households are more likely to harvest and sell firewood when (1) forests are far enough from the 

village to drive up the market price, and (2) a market is accessible to the household (Albers and 

Robinson, 2013; Miteva et al., 2017; Bošković et al., 2018). Since there are markets within each 

refugee camp (Betts et al., 2017), these results suggest that income-generating forest extraction 

could manifest several kilometers from the camp itself. Income transfers may reduce demand for 

forest products in the event that substitution between forest and non-forest goods is feasible (Ferraro 
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and Simonrangkir, 2020). But refugees face severe income constraints, and substitutes for cooking 

fuel, such as liquid propane gas cookstoves, may not be available in the markets they can access. 

My analysis focuses exclusively on the impacts of planned refugee camps, and the findings 

are not generalizable to other types of refugee locations, such as settlements, transit centers, etc. 

Countries in my sample also vary with respect to government hosting policies, with some placing 

strict limitations on refugee labor and mobility outside of camps (Blair, Grossman and Weinstein., 

2020). These policies may have important implications for environmental outcomes, but in the 

absence of available data on country encampment policies, examining this important heterogeneity is 

beyond the scope of the present study.  

The effect of refugee population influxes and refugee camps on host landscapes remains an 

understudied topic in the economics literature. The growing body of quasi-experimental studies that 

have explored the impacts of refugee influxes in SSA tend to examine changes for host communities, 

focusing on outcomes such as employment, wages, health, consumption, wellbeing, prices, or 

nutrition (see for example Alix-Garcia and Saah, 2010; Baez, 2011; Alix-Garcia, Bartlett and Saah, 

2013; Maystadt and Verwimp, 2014; Ruiz and Vargas-Silva, 2015, 2016; Kreibaum, 2016; Alix-

Garcia et al., 2018; Maystadt and Duranton, 2019; Maystadt et al., 2019).  

To my knowledge, Maystadt et al. (2020) is the only previous quasi-experimental study to 

examine the impacts of camps on the landscape, and they also focus on SSA. Their analysis uses an 
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instrumental variable approach that regresses land cover changes on predicted refugee camp 

population size and other covariates. They find that increases in the refugee camp population within 

a 111 by 111 km area results in a small increase in vegetation density for that area, but they also find 

that tiles with larger camp populations were more likely to experience both forest loss and 

agricultural expansion between 2001 and 2012. The relatively coarse resolution of analysis in 

Maystadt et al. (2020) might obscure significant relationships between camp proximity and 

deforestation. I therefore extend their analysis by processing all spatial data at a much finer spatial 

resolution (1.1 km by 1.1 km) so that I can examine where, in relationship to the camp, forest losses 

occur. I also build on this previous work by removing areas within the camps from the analysis and 

by dropping refugee settlements from the sample. By doing so, I can more accurately measure how a 

planned refugee camp, as a spatial unit, impacts the land cover around it.  

I use a dataset of refugee camp locations and years of operation across the subcontinent as 

well as numerous spatially explicit, gridded secondary datasets. I generate 499,586 sample tiles at 

0.01° resolution selected from areas near camps. For each sample tile, I calculate the zonal statistics 

for each of the spatially explicit dependent variables, along with the annual number of camps present 

at different distances from each tile. I estimate a difference-in-difference specification that exploits 

variation in camp openings and closings, as well as variation in tile proximity to camps, to observe 

the magnitude of camp-attributed forest losses and the distances from the camps these losses 
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manifest. To ensure the comparability of areas with similar ecological endowments, I estimate my 

regressions separately for two different biome groups: grasslands (!	 = 	359,284) and rainforests 

(!	 = 	112,134). 

 I find evidence of statistically significant but extremely small changes to forest cover in 

response to camp exposure. Regression outcomes suggest that camps are not statistically associated 

with extensive margin forest losses in grasslands, and in rainforests, I find statistically significant, 

but modest, reductions in extensive margin forest loss in response to camp exposure. In both biomes, 

camps appear to drive statistically significant, but very small, reductions in forest cover along the 

intensive margin. These results are robust to several checks. I also estimate first differences over 

relative time, and the outcomes suggest that camp impacts may take up to a decade to manifest. 

The remainder of this paper is structured as follows. Section 2 discusses the data sources 

used in my analysis and provides descriptive statistics on the geographic and economic 

characteristics of the camp locations. Section 3 outlines the analytical approach, and in Section 4 I 
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report the results. I conduct robustness checks and describe the outcomes in Section 5. My 

concluding marks appear in Section 6.  

 

2. Data 

2.1 Datasets 

I use the African Refugee Dataset (ARD, see Anti, Salemi, and Wilson 2020), which identifies the 

locations of refugee camps in sub-Saharan Africa that operated between 1999 and 2016. The data 

includes camp name, year of creation, year of dissolution (if relevant), and the geographic 

coordinates of the location. This data is based on various UNHCR sources that were cross-checked. 

The ARD covers 424 refugee camps active between 1999 and 2016, which are distributed across 35 

countries. Data collection, cleaning, and validation procedures are all recorded in Anti, Salemi, and 

Wilson (2020).  

  The ARD dataset may be more accurate than the UNHCR’s internal data, which Maystadt et 

al. (2020) use and which is not publicly available. UNHCR’s internal data informs the Statistical 

Yearbook and People of Concern Maps that the ARD is built on. Cross-checks of these sources 

against other secondary accounts revealed frequent data entry errors, such as the misclassification of 

non-camp refugee locations as camps or incorrect data on the first year of camp operation. We can 

see these errors in the mapping of camp locations in Maystadt et al. (2020). For example, that paper 
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reports several refugee camps in Libya, but since there are no planned refugee camps in Libya, I 

suspect these points actually represent detention centers.2 Based on the aforementioned errors, I 

believe that ARD is a relatively more accurate account of camp locations and years of operation. 

  For this study, I restrict the ARD sample to only camps operating for at least one year 

between 2001 and 2012 with no missing information and drop Ugandan refugee settlements. This is 

another difference between my study and Maystadt et al. (2020), which keeps the refugee 

settlements in Uganda in the analysis, even though their geographic size and land use policies differ 

considerably from planned refugee camps.3 The resulting sample is made up of 300 camps. The 

majority (35%) of these camps are located in east Africa, with sizable shares in central (33%) and 

west (25%) Africa as well. Very few (7%) of the camps were in southern Africa.  

  Figure 1illustrates the opening and closing years of all camps in the study and classifies 

camps into four categories based on their years of operation. The oldest camps are in the upper-left-

hand corner of the graph, and the youngest in the lower right-hand corner. About one-third (33.7%) 

of the camps opened and closed during the study period. One-quarter (27%) opened before 2001 and 

closed during the study period. Additionally, one-quarter of the camps (28%) opened after 2001 but 

 
2 This map is included in the supplemental information document of  
3 Following the ARD’s data validation protocol, refugee settlements in Uganda were included in the 
ARD data (see Anti, Salemi and Wilson (2020)). But these settlements are not comparable to camps 
because they are significantly larger. Some of the settlements are as large as 50 km in length. 
Moreover, settlement residents are allocated land to cultivate, which will result in different land 
clearing patterns as compared to planned camps.  
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closed in the years after the study period. For a small number (11%) of cases, the camps were open 

the entire study period. Figure 1 also shows that some camps in the sample were only open for a 

short period of time. Indeed, one-fifth (19%) of sample camps were only active for two years (see 

Appendix A2). Camps that operated for a short period of time may not trigger as much forest loss as 

camps that operated for years, which motivates one of my robustness checks (Section 3.4). 

 

Figure 1: camp opening and closing years, ARD camps operating 2001-2012 

 
Source: author’s calculations using ARD data. The vertical reference line is at 2001, the first year of 
the study period. The horizontal reference line is at 2012, the final year of the study period. 
  

Throughout this paper, I distinguish between extensive margin deforestation and intensive 

margin deforestation. The former refers to the case where an area transitions from non-zero forest 

cover to zero forest cover in a given year. The latter refers to gradual reductions in the area’s percent 
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forest cover over time. For cleaned and consistent geospatial data on extensive margin deforestation, 

I use the Global Forest Change (GFC) data for the years 2000-2012 (Hansen et al., 2013). GFC grid-

cells have a high resolution of 30 meters, and the data only classify forest cover as vegetation growth 

of at least five meters in height. The data consist of a 2000 baseline measure of forest coverage and 

indicate the year in which a grid-cell transitioned to zero forest cover, if relevant. The GFC is widely 

used in economic studies of deforestation,4 but the data have some flaws. For example, Tropek et al. 

(2014) show that the GFC often misclassify plantations for products such as oil palm and rubber as 

natural forests. 

Another weakness of the GFC is the data’s high threshold for change. Because the GFC can 

only indicate when a 30-meter grid-cell transitions to zero forest cover, smaller-scale losses are not 

detected (Burivalova et al., 2015). To examine land degradation at the intensive margin, I use the 

Global Forest Cover Change (GFCC) data produced by NASA (Sexton et al., 2013). The GFCC is at 

the same resolution as the GFC (30 meters) and also uses the 5-meter tree growth criteria to classify 

forests. At five-year intervals (2000 to 2015), the GFCC data reports each grid cell’s percentage 

forest cover. Hence, the GFCC can capture marginal reductions in percent forest cover that do not 

result in the grid cell transitioning to zero forest cover.  

I additionally use RESOLVE’s 2017 ecoregions data (Dinerstein et al., 2017). I use this data 

 
4 see for example: Alix-Garcia, Sims and Yañez-Pagans (2015), Berazneva and Byker (2017) and 
Abman (2018). 
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to separately examine outcomes for two biomes of interest:5 tropical and subtropical moist broadleaf 

forests (“rainforests” hereafter) and tropical and subtropical grasslands, savannahs, and shrublands 

(“grasslands” hereafter). I disaggregate the analysis by biome following the assumption that any 

camp-stimulated changes to the landscape are likely a function of baseline ecological characteristics, 

which are a function of bioclimatic attributes. Consequently, if outcomes vary by biome but the 

specification does not account for biome, then the estimates may fail to accurately convey the 

impacts of camp exposure. 

Figure 2 maps GFC 2000 forest cover data and REACH biome data for the continent and 

illustrates the spatial distribution of the ARD camps used in this study. The camps are often located 

very close to the border that refugees crossed to enter the host country. Panel A shows that while 

some of these camps are in the more densely forested regions of central and west Africa, many are 

also located in regions with very little forest cover in 2000. Panel B shows that camps predominantly 

fall into the grasslands and rainforest biomes. 

  

  

 

 

 
5 Biomes are large areas of earth characterized by similar climate and ecological conditions with 
specific communities of flora and fauna that thrive in these conditions. There are seven terrestrial 
biomes across the planet. 
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Figure 2: camp locations mapped onto spatial data used for the study  

Panel A: Percent forest cover in 2000 (GFC) 

 

Panel B: Biomes of Africa (REACH) 

 
 

Source: author’s calculations using ARD data for camps operating 2001-2012, GFC and RESOLVE 
data. Camp locations displayed as black points. Panel A displays percent forest cover in 2000 based 
on the GFC (aggregated at a 1 km resolution). Panel B shows the two biomes used in the study 
(grasslands/savannahs and rainforests) as well as areas characterized as desert biome. “Other” 
includes flooded grasslands and savannahs, dry broadleaf forests, mangroves, and montane 
grasslands/shrublands: it is very uncommon to find ARD camps in these biomes.  

 

2.2 Data preparation 

 Figure 3 illustrates the sampling technique I use in this study. Based on the geographic 

locations of camps (Panel A), I determine the 30 km buffer areas around each camp, shown in Panel 

B. I merge overlapping buffer areas together to prevent over-counting. Within these buffer areas, I 

generate 0.01° tiles, which are roughly 1.1 km by 1.1 km each (Panel C). I use the GFC, GFCC, and 

RESOLVE data to determine zonal statistics for each tile. For example, Panel D shows the 30-meter 

GFC grid-cell data on 2000 percent forest cover over one sample tile. I calculate zonal statistics 
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using grid-cell data that intersects the tile. I also define each tile’s centroid and use this point to 

produce annual estimates of the number of camps 1, 2, …, 20 km from the tile every year 1996-

2012, based on Euclidean distance.6  

  

 

 
6 As I describe in Section 3, I use camp proximity data 1996-2000 in order to determine the number 
of years a tile was exposed to a camp over the previous five years. I use this an explanatory variable 
in my DID regression with percent forest cover (GFCC) serving as the outcome variable. 
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Figure 3: Illustration of sampling strategy used for this study 

Panel A: Geographic locations of camps 
 

 

Panel B: 30 km buffers, west-central Africa 

 
Panel C: 30 km buffer divided into 0.01° 

tiles 

 

Panel D: 30m GFC grid-cells within 0.01° tile 
 

 
Source: author’s calculations using ARD 2001-2012 and GFC 2000 baseline forest cover data. Panel 
A shows all camps open at some point 2001-2012 as dots and locates the area of the continent shown 
in Panel 2 in a grey box. Panel B illustrates 30 km buffer areas around camps in west-central Africa. 
Panel C shows the 0.01° tiles within one of these buffers. Panel D illustrates higher-resolution grid 
cells within one sample tile, which are used to calculate zonal statistics. 
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If the land allocated for a camp has vegetation cover, land clearing may be obligatory in 

order to make room for housing and necessary infrastructure. In order to focus on how camps impact 

the landscapes around them, I drop all observations that are less than 1 km from the nearest camp at 

any point, as in this case, the camp and the tile likely overlap. The assumption that camps tend to 

have a radius of 1 km is justifiable,7 though there are some camps that are larger in surface area. I 

address the possibility that camps are larger than assumed in a robustness check (Section 3.4). 

  To ensure that tiles are large enough to be comparable regardless of their relative position 

within a buffer area, I drop all tiles from my 0.01° sample with fewer than 1,000 30-meter grid-cells 

within them. In doing so, I omit tiles around the periphery of the buffer that are considerably smaller 

than other tiles (See Figure 3 Panel C). I also drop all observations from Liberia, where early results 

revealed considerable noise in the years leading up to camp openings.8 

2.3 Descriptive statistics 

 Table 1 provides descriptive statistics: I report means for the entire sample and for sub-

 
7 To my knowledge, there is no publicly available information on the average geographic size of 
refugee camps in SSA. But UNHCR protocols can provide an idea of what a suggested camp size 
would be for a certain size population. UNHCR recommends a camp size of 45 square meters per 
resident. Assume this standard is maintained and consider a refugee camp with a radius of 1 
kilometer (and an area of roughly 3,141,592 square meters). By the UNHCR standard, such a camp 
area could accommodate roughly 70,000 residents. My sense is that many camps in SSA have 
populations this size or smaller, though there are some exceptions. For example, there are 
approximately 150,000 refugees living in Nyarugusu Camp in Tanzania, which is one of the largest 
camps on the continent. 
8 For more discussion on the omission of Liberia from the study, see Appendix A1. 
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samples defined by the minimum distance between each tile and the nearest camp open at any point 

2001-2012. About half (56.4%) of sample tiles were not within 20 km of any refugee camps at any 

point in the study period: these tiles serve as a comparison group in my econometric specification. 

Over one-third of the tiles were within 20 km of one camp at some point over the study period 

(34.5%), though a small share (9.2%) were within 20 km of two or more camps.  

Tiles 1-10 km from the nearest camp had slightly lower forest cover in 2000 compared to 

tiles further away based on the GFC and GFCC data. These relationships hold even when restricting 

to only tiles that had not yet been exposed to a camp as of 2000 (Appendix A2). This slightly lower 

baseline forest cover and forest quality cover may be due to the following factors. First, when 

looking for land to build a camp on, host governments tend to prefer land available at the lowest 

cost. Landowners may not be incentivized to allocate land with valuable natural capital, such as 

more forested land, and may instead allocate land that is already cleared, has poorer soil quality, etc. 

Second, in order to minimize the costs of preparing the area for settlement, stakeholders may try to 

select plots that are already relatively cleared. Third, in countries that have experienced numerous 

waves of refugee arrivals over time, camps may sit dormant for years and come back into use when 

needed. These observations may appear in the ARD as “new” camps, even though they were first 

built years prior.9  

 
9 For example, the Tanzanian government re-opened Nduta camp for Burundian refugees in 2015 
(Oxfam International, 2015). 
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  Both the GFC and GFCC data provide evidence of modest reductions in forest cover over the 

study period. Table 1 shows the average number of 30-meter GFC grid-cells that transitioned to zero 

forest cover between 2001 and 2012 for sample tiles. On average, tiles lost 1.8 30-meter grid-cells, 

less than one percent (0.13%) of the tile’s surface area. It appears that tiles closer to camps lost 

slightly more 30-meter grid-cells than those further from camps. The naïve estimates suggest that 

over the study period (2001-2012) tiles 1-5 km and 6-10 from camps experienced an additional 720 

and 360 square meters of forest loss (respectively), relative to comparison tiles 21-30 km away. 

These differences are not especially large (they are smaller in surface area than a baseball diamond). 

The GFCC data suggests that on average, only tiles 1-5 km from a camp (at some point over the 

study period) experienced intensive margin forest loss 2000-2010, but this reduction is very small, 

0.02 percentage points (ppt).   

  



  
Table 1: Descriptive statistics  

  Full sample 

Nearest 
camp 1-5 
km away 

Nearest 
camp 6-10 
km away 

Nearest 
camp 11-15 
km away 

Nearest 
camp 16-20 
km away 

Nearest 
camp 21+ 
km away 

Pct. forest cover '00 (GFC) 26.08 23.58 25.32 25.73 26.22 26.38 

Num. 30m grid-cells transition zero forest 

cover '01-'12 (GFC) 

1.82 2.51 2.10 1.92 1.79 1.71 

Mean forest cover '00 (GFCC) 15.13 13.53 14.47 14.63 15.00 15.49 

Ppt. forest cover change '00-'10 (GFCC) 0.18 -0.02 0.03 0.09 0.16 0.24 

Pct. with 1 camp 1-20 km away 34.47 60.86 67.83 76.63 89.14 0.00 

Pct. with 2+ camps 1-20 km away 9.18 39.14 32.17 23.37 10.86 0.00 

Pct. in grassland biome 74.90 77.85 76.72 76.80 75.74 73.74 

Pct. in rainforest biome 19.35 19.13 19.71 18.97 19.26 19.43 

Pct. in other biome 5.75 3.02 3.56 4.23 5.00 6.84 

N 479,686 15,117 36,915 50,727 85,265 270,316 

Number of buffers 149 149 149 149 149 149 

Source: author’s calculations using ARD, GFC, GFCC, and RESOLVE, data. Columns are organized based on the distance between the 

tile’s centroid and the nearest camp open at any point between 2001 and 2012.
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3. Method 
 
The difference-in-difference econometric approach used in this study exploits variation in the 

timing of camp openings and closings to determine camp impacts. The sample tiles are much 

smaller than those specified in Maystadt et al. (2020), facilitating a spatially explicit examination 

of whether camps influence their surrounding areas.  

3.1 Endogenous camp site selection 
 

Refugee camp locations are not exogenous and will likely have characteristics that are 

different from other nearby areas. Information gathered from key informant interviews suggests 

that camp site selection operates on the basis of several rather time-invariant factors.10 In the 

event that a new camp is required, government stakeholders generally aim to acquire land in the 

area close to the refugee point of border entry. The objective of this strategy is to minimize 

transportation costs, increase the likelihood of voluntary return in the future, minimize security 

risks in major urban areas, and maximize cultural proximity between refugees and hosts. Given a 

preferred region for the camp, the host government then seeks to obtain a land allocation of 

sufficient size. In some cases, they re-designate government land for the camp, which often 

means allocating parcels of forest reserves, government ranches, or former military sites. In 

many other cases, host governments negotiate with communal or individual landholders, seeking 

to obtain plots on the basis of “good will.” Such agreements are most attractive to villages that 

 
10 My understanding of the political economy of camp site selection comes from fieldwork 
conducted in July and August 2019 in Kenya, Rwanda, Uganda, and Tanzania. During this time, 
I spoke with government officials, UNHCR site planners, FAO specialists, and other nonprofit 
stakeholders to learn more about the decision-making process behind refugee camp land 
designation. This fieldwork was funded by the University of [XXX]. For a full description of this 
work, see the Appendix section of [XXX and XXX (XXXX)]. 
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both have unused land to offer and see the benefits of hosting as outweighing the costs.11 

Whether the land is heavily forested or not will depend on the site’s tenure regime and the 

characteristics of the land available in the area.12  

The factors that determine camp selection—proximity to the border with the refugee-

sending country and the availability of free or low-cost land—are relatively time-invariant. But 

this selection process may mean that land allocated for camps is often not desired by others. It is 

possible that the land’s undesirability stems from ecological characteristics that are also related 

its forest cover (Maystadt et al., 2020).  

 
  3.2 Primary estimation approach 

To estimate the impact of camp exposure on extensive margin forest loss, I perform the 

following regression: 

!!" = # +%##&'()*!"# + +! +Φ+ -!$"
%

#&'
																																																																																(1) 

I define !!" as the number of 30-meter grid-cells within 0.01° sample tile 2 that transitioned to 

zero forest cover in year 3 according to the GFC for years 2001-2012.13 The explanatory 

variables of interest indicate the number of camps that are in distance bin 4, where 4 ∈ 6 and 

 
11 That is, the value of the services that the camp-related humanitarian assistance brings to the 
area – in terms of improved schools, healthcare, safe water access, etc. – outweighs the losses 
from donating land indefinitely. The net value is positive for these communities partly because 
they were peripherally located and poor prior to the camp’s establishment. 
12 Generally speaking, when there is an abundance of unused land in a fertile region, camps will 
be within close proximity to forest resources. But if unused land in the region tends to be the 
least suitable for vegetation, then refugees may not be in close proximity to forest resources. 
13 The outcome variable is measured in terms of 30-meter grid-cells lost, instead of percent of 
grid-cells lost, in order to obtain coefficients that do not need to be re-scaled. Using the latter 
measure, I obtain the same sign and significance for my estimates, but the coefficients are 
extremely small. 
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6 = {(1,5], (5,10], (10,15], (15,20]} kilometers. For example, the variable &'()*!"
[',*] reports 

the number of camps that were 1-5 km from the tile’s centroid in a given year. The tile fixed 

effect +! controls for numerous time-invariant characteristics of the tile that are likely 

endogenous to refugee camp site selection and land cover changes, such as soil fertility, terrain 

slope and elevation, baseline forest cover, agroecological zone, land tenure status, and time-

invariant heterogeneity across countries and regions. The sampling approach my lead to serial 

autocorrelation for tiles sampled from the same buffer. Following Cameron and Miller (2014) I 

cluster my standard errors at the buffer level to address serial autocorrelation arising from the 

grouped structure of the data. The clustering of standard errors is also important because of the 

DID framework: Bertrand, Duflo and Mullainathan (2004) argue that naïve DID specifications 

under-state the standard deviation of the estimated treatment impacts and that clustering standard 

errors is one way to avoid mischaracterizing statistical significance. 

 The coefficient ϕ	represents one of two approaches to control for time. In the first 

approach, Φ = ?", a time fixed effect that captures time-varying, location-invariant factors 

relevant to camp openings and forest change. But recent scholarship has shown that two-way 

fixed effects can lead to biased estimates in the event that the timing of treatment varies across 

observations and treatment impacts are heterogeneous. An important identifying assumption for 

this two-way fixed effects specification is that each “cohort”14 of exposure tiles is exposed to the 

same treatment, a planned refugee camp. Because of potential bias associated with two-way 

fixed effects, I also estimate Equation 1 where Φ is a linear trend.  

 Without more information on the populations residing in this area, I cannot determine 

whether any changes can absolutely be attributed to the activities of hosts versus refugees. But 

 
14 “Cohort” refers to groups of tiles exposed to camps in the same year. 
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because the explanatory variables are based on the distance to camps each year, the coefficient 

estimates will reveal whether or not changes in forest cover manifest at distances from camps 

that are accessible to refugees. Qualitative accounts suggest that some refugees allocate several 

hours per day to fetching firewood (Whitaker, 2002; Mulumba, 2011; Rivoal and Haselip, 2017). 

But to my knowledge, there have been no studies that track the distances people traverse as they 

extract forest products. A back-of-the-envelope calculation leads me to suspect that any direct 

refugee forest extraction will likely take place 10 kilometers or less from the camp boundary.15 

Since my distance measures are based on the camp centroid, and since some camps may be 

larger than 2 km in diameter, I also consider the 11-15 km area as a potential site of refugee-

driven forest change. If the results indicate forest losses only within this 1-15 km distance, that 

will support the theory that camp residents are driving land cover changes.  

 I estimate Equation 1 separately for tiles in the grasslands biome and tiles in the 

rainforest ecoregion. If forest loss was driven by large numbers of refugees extracting firewood 

for consumption, then one would expect that grasslands, with their very limited tree cover, would 

quickly transition to zero forest cover near camps. The impact at the extensive margin in 

rainforests is initially ambiguous: refugee foraging may not be sufficient to lead to full land 

clearing, but the population influx could influence the marginal returns to harvesting from forests 

and may also stimulate agricultural expansion that requires land clearing. 

 I estimate the impact of camp exposure on intensive margin forest loss using the GFCC 

 
15 Suppose it takes on average 15-20 minutes to walk 1 km over natural terrain (when factoring 
in the weight of firewood for at least half the trip). If a refugee traveled in a straight line away 
from the camp for 10 km fetching firewood, this would require about 5-6 hours of roundtrip 
walking. In reality, it seems unlikely that someone would follow such a direct path and continue 
to move without taking any breaks. This simple calculation leads me to suspect that any forest 
losses beyond 10 km are not likely attributable to camp residents. 
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with the following regression: 

 

!!" = @, +%@#&'(). !-'B*!"# + C! +Φ	 + D!$"
%

#&'
																																																																													(2) 

 

Here, !!"	is the percent of forest cover over grid cell 2 in year 3 based on the GFCC. The GFCC 

only includes data at five-year intervals, so 3 = 2000, 2005, 2010. Because I do not have annual 

GFCC data, the variable of interest &'(). !-'B*!-#  represents how many years (over the previous 

five years) the tile was exposed to at least one camp at distance 4. For example, 

&'()!-'B*!,.,,*
[',*] = 2 means that between 2001 and 2005, there was at least one camp 1-5 km 

away from tile 2 for two years. Like Equation 1, Equation 2 includes a tile fixed effect, robust 

standard errors clustered at the buffer level, and time controls Φ. Again, I estimate this 

specification for tiles in grasslands and rainforest biomes separately. 

 One limitation of the estimation approach is that it does not account for variations in 

camp sizes over time. Camp population data in secondary sources is largely incomplete, and 

Maystadt et al. (2020) had to drop many camps from their sample for their estimations because 

of insufficient population data. The identification strategy rests on the assumption that camp 

population sizes are generally constant over time, meaning camps do not oscillate between very 

large and very small populations. 

 

3.3 Evaluation of pre-trends 

In the identification strategy, I assume that tiles over 20 km from camps, as well as tiles not yet 

exposed to a camp, serve as a valid counterfactual. The true counterfactual is unknowable, but an 
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evaluation of trends prior to camp exposure can provide support for the comparison group as a 

valid proxy counterfactual. Given the staggered timing of camp exposure, I use an event study to 

evaluate pre-trends. The specification is as follows: 

 

!!" = E, +% % E#-(32(-!"
#,-)

/

-&0/
	+ F! +Φ+ G!$"

%

#&'
																																																											(3)	 

 

Here, 3B-'3-4! 	 is a binary indicator equal to 1 if 3 corresponds with relative exposure year I for 

at least one camp at distance 4 from tile 2. For example, 32(-"!
[',*],0. = 1 means that in year 3, 

tile 2 is not yet exposed to a camp 1-5 km away, but a camp will open at this distance after two 

years. Tiles 21-30 km from a camp serve as the comparison group, and the period right before 

camp opening serves as the placebo “pre-treatment” period. I perform this event study using 

GFC (extensive margin) and GFCC (intensive margin) outcome variables. When using the GFC, 

I organize relative time into one-year bins. Because I have fewer years of GFCC data, I organize 

relative time into two-year bins.  

Null estimates of E#- when I < 0 suggest that trends prior to camp openings are parallel. 

But scholars have recently begun to show that this traditional event study evaluation of pre-

trends may lead to Type II errors, with researchers inferring zero pre-trends despite the presence 

of a nonzero pre-trend (Borusyak and Jaravel, 2017; Kahn-Lang and Lang, 2018; Roth, 2020). 

To more rigorously test for the presence of nonzero pre-trends,16 I follow Borusyak and Jaravel 

 
16 The topic of DID pre-trends represents an active frontier in economics. Recent working papers 
have also examined methods to account for non-zero pre-trends in DID frameworks. For 
example, Freyaldenhoven, Hansen and Shapiro (2019) present an instrumental variables 
approach using some observable that proxies the confound driving the divergence in trends pre-
treatment. Rambachan and Roth (2020) recently developed a technique that only requires that the 
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(2017) and perform an F-test comparing the unrestricted event study to a restricted specification. 

The authors recommend dropping two pre-treatment variables for an event study with one 

treatment group. Because I estimate the impact for four treatment groups simultaneously, I omit 

eight relative time variables at I = −1 and I = −4	when regressing extensive margin forest loss 

on relative time. For the intensive margin event study I omit eight relative time variables at I =

[−3,−2] and I = [−9,−8]. If the restricted and unrestricted specifications are not statistically 

different, this lends additional support to the assumption that the difference in trends prior to 

camp opening is statistically zero. 

 

3.4 Robustness checks 

As mentioned, some of the camps are only active for a few years, which may not be enough time 

for them to impact the landscape. Consequently, I repeat my estimates restricting the sample to 

only tiles around camps that were active for more than two years.  

Moreover, the impacts on the landscape may only manifest after a number of years of 

camp exposure. To examine average impacts by year of exposure, I use a first difference 

specification to estimate differences in forest cover each relative year. This specification closely 

resembles the event study (Equation 3), but it does not include a placebo pre-treatment year. 

Additionally, it is possible that camp-stimulated increases in firewood demand could lead 

to harvesting in areas with the highest marginal value (i.e., denser forests). Consequently, I 

estimate the impact of camp exposure on forest cover change at the intensive and extensive 

margin using a sub-sample of tiles with 50 percent forest cover or greater in 2000 (according to 

 
researcher impose restrictions on the difference in pre-trends to estimate “honest” DID 
coefficient estimates.  
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the GFC data).  

My identification strategy largely rests on the assumption that camps tend to be about 2 

km in diameter. While this makes sense for many camps, there are some large camps that exceed 

this size. If the camp is larger than expected, then the comparison group may be contaminated, as 

refugees may not be as far from the area 21 km from the camp centroid as expected. To ensure 

that the results are not driven by contamination of the comparison tiles, I build a new sample 

consisting of 596,722 0.01° tiles extracted from 30 km buffer areas on the subcontinent that are 

outside of the study areas used for the primary analysis.17  

For this final robustness test, I drop all tiles from my primary data that are 21-30 km from 

the nearest camp (the comparison group in my main analysis). I then randomly select 5% from 

the new sample of comparison tiles, append these to my primary dataset, and estimate the main 

specifications. I do this 100 times for each specification and evaluate the distribution of 

coefficient estimates relative to the main results. 

 

4. Results 

4.1 Pre-trends testing 

The event study results are reported in Appendix A4. Across outcome variables and biomes, the 

estimates are statistically insignificant over pre-treatment years leading up to camp exposure for 

grasslands and rainforest tiles. Table 2 reports the outcomes of the F-test on the pre-treatment 

trends. The sample of tiles from the grasslands biome performs well across all specifications and 

outcome variables, with relatively low F-values (p≥0.27). For rainforest tiles, the results offer 

the strongest support for zero pre-trends for the two-way fixed effects specifications when the 

 
17For more information on this sampling strategy, see Appendix A3. 
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extensive margin forest loss variable is the dependent variable. Rainforest tiles perform poorly in 

the pre-trends test when percent forest cover serves as the dependent variable, which could be 

related to the low number of observations over relative time when restricting to the rainforest 

biome and only three years of data.  

 
 
Table 2: Results of F-test of pre-trends in event study specifications 

Dep. var. - number of 30m grid cells that transition to zero forest cover (GFC) 
 Grasslands Rainforests 

  F-value P-value F-value P-value 
Twoway fixed effects 1.2521 0.2749 1.2048 0.3191 
Linear trend 1.0674 0.3903 1.7918 0.1052 

Dep. var. - percent forest cover (GFCC) 
 Grasslands Rainforests 

  F-value P-value F-value P-value 
Twoway fixed effects 0.9313 0.4933 6.2826 0.0000 
Linear trend 0.7860 0.6158 11.6054 0.0000 

Notes: table reports results of pre-trends test proposed by Borusyak and Jaravel (2017). To 
perform the test, I estimated Equation 3, then dropped eight pre-treatment variables and tested to 
see if the specification fit of the restricted regression was significantly different than that of the 
unrestricted regression. Using the GFC outcomes variable, I drop explanatory variables at 
relative time I = −1 and I = −4. When the GFCC data provides the outcome variable, there are 
fewer years of data, so relative time is organized into two-year bins. I drop I = [−3,−2] and 
I = [−9,−8] for the F-test. Regressions use sample of tiles measured at 0.01° resolution. 
 

 

4.2 Main results 

With respect to extensive margin forest loss (Table 3), my results suggest that camp exposure 

does not lead to economically or statistically significant impacts when the camp is located in the 

grasslands biome. The results suggest that in rainforests, camp exposure results in a small 

reduction in extensive margin forest loss. Each year of camp exposure is associated with a small 

fraction of one 30-meter grid-cell within the 0.01° tile not transitioning to zero forest cover. This 
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avoided extensive margin forest loss manifests at all distances 1-20 km from the camp. But the 

magnitudes are small. For example, the result of the two-way fixed effects model for tiles 1-5 km 

from a camp suggest that camp exposure results in approximately 128 square meters18 of 

avoided forest loss per year for that tile. To put this result in perspective, that surface area is 

roughly the size of a medium-sized swimming pool.  

    

Table 3: Coefficient estimates for Equation 1 with number of 30-meter grid-cells in the tile 
that transitioned to zero forest cover (based on GFC data) as outcome variable  

 Grasslands Rainforests 
 (1) (2) (3) (4) 
N camps 1-5 km 0.011 0.010 -0.142*** -0.163*** 
 (0.007) (0.007) (0.017) (0.017) 
N camps 6-10 km 0.002 0.001 -0.067*** -0.088*** 
 (0.003) (0.003) (0.009) (0.009) 
N camps 10-15 km 0.004 0.003 -0.102*** -0.126*** 
 (0.003) (0.003) (0.007) (0.007) 
N camps 15-20 km -0.005** -0.006*** -0.120*** -0.146*** 
 (0.002) (0.002) (0.005) (0.005) 
Two-way FE? Yes No Yes No 
Linear trend? No Yes No Yes 
Obs. 4,343,568 4,343,568 1,349,436 1,349,436 
N. buffers 124 124 44 44 
Q. 0.212 0.211 0.197 0.190 

Source: author’s calculations based on the ARD, GFC, and RESOLVE data. Regressions use 
sample of tiles measured at 0.01° resolution. Robust standard errors are clustered at the buffer 
level and are reported in parentheses. *p<0.05 ** p<0.01 *** p<0.001 
 
  

At the intensive margin, I find evidence of statistically significant, but modest, reductions 

in tile percent forest cover in response to camp exposure (Table 4). In the grasslands biome, the 

impacts at the intensive margin are negative and significant, but small: for example, one year of 

 
18 Each 30-meter grid-cell has a surface area of 900 square meters. 14.2% of this surface area is 
roughly 127.8 square meters. 
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exposure to at least one camp results in the reduction in the tile’s tree canopy cover by 0.13-0.15 

ppt. for tiles 1-5 km from the camp. This represents a 1.2-1.4 percent reduction of the sample 

mean in 2000. Intensive margin losses in rainforests are slightly larger in magnitude and 

statistically significant: among rainforest tiles 1-5 km from a camp, one year of camp exposure is 

associated with a reduction in tile forest cover by 0.21-0.23 ppt., a 0.6 percent reduction relative 

to the 2000 sample mean. But the results of the pre-trends analysis suggest that these estimates 

may be biased. 

 

Table 4: Coefficient estimates for Regression 2 with tile percent forest cover (based on 
GFCC data) as outcome variable  

 Grasslands Rainforests 
 (1) (2) (3) (4) 
Yrs. exposure to 
camp 1-5 km 

-0.133*** -0.154*** -0.216*** -0.226*** 

 (0.008) (0.008) (0.023) (0.023) 
Yrs. exposure to 
camp 6-10 km 

-0.091*** -0.114*** -0.213*** -0.224*** 

 (0.005) (0.005) (0.013) (0.013) 
Yrs. exposure to 
camp 11-15 km 

-0.115*** -0.140*** -0.187*** -0.199*** 

 (0.004) (0.004) (0.010) (0.010) 
Yrs. exposure to 
camp 16-20 km 

-0.117*** -0.144*** -0.176*** -0.189*** 

 (0.003) (0.003) (0.008) (0.008) 
Two-way FE? Yes No Yes No 
Linear trend? No Yes No Yes 
GFCC mean 2000 10.82 10.82 34.13 34.13 
Obs. 1,077,852 1,077,852 336,402 336,402 
N. buffers 124 124 44 44 
Q. 0.983 0.983 0.983 0.983 
Source: author’s calculations based on the ARD, GFCC, and RESOLVE data. Regressions use 
sample of tiles measured at 0.01° resolution. Robust standard errors are clustered at the buffer 
level and are reported in parentheses. *p<0.05 ** p<0.01 *** p<0.001 
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Perhaps refugees living in the camp are driving these intensive-margin losses through 

their forest harvesting activities. But impacts manifest at distances so far from camps (15-20 km) 

that refugee encroachment seems unlikely. These results highlight the complexity of camp-

associated forest loss. It is very possible that the activities of camp residents lead to some of 

these modest intensive margin losses. But the losses 15 km from the camp or further suggest that 

the activities of other groups may also change in response to camp openings in a manner that 

influences forest cover.  

 

4.3 Robustness checks 

In Appendix A5, I report the results of the robustness check in which I drop any tiles that were 

exposed to camps for two years or fewer. The extensive margin outcomes are the same for 

grasslands, but the rainforest estimates become weaker in terms of statistical significance. 

Intensive margin results for grasslands are similar to the main results with respect to coefficient 

magnitudes, though these estimates have lower statistical significance than the main results. The 

rainforest estimates for intensive margin change are slightly larger in magnitude than the main 

estimates, though they also tend to exhibit lower statistical significance.  

 The first difference results (using two-way fixed effects) are shown in Figure 4 and 

Figure 5 for grasslands (graphs for rainforests reported in Appendix A6). The extensive margin 

first difference trend exhibits a spike in losses manifesting after ten years for grasslands (Figure 

4). But the magnitude of the difference at I = 10 is very small. Likewise, the intensive margin 

results suggest that losses manifest about a decade after camp opening (Figure 5). The trends for 

rainforests closely resemble the trends for grasslands. These results suggest that camp-stimulated 

changes may take considerable time to manifest. My estimates may not capture high levels of 
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forest loss because it takes so long for the changes to occur and because my study period consists 

of only twelve years. 
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Figure 4: Coefficient estimates for first difference specification with number of 30-meter grid-cells in the tile that transitioned to 
zero forest cover (based on GFC data) as outcome variable, tiles in grasslands biome 

 
Source: author’s calculations based on the ARD, GFC, and RESOLVE data. Regression uses sample of tiles measured at 0.01° 
resolution. Robust standard errors are clustered at the buffer level. 95% confidence intervals displayed with dashed lines. 
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Figure 5: Coefficient estimates for first difference specification with percent forest cover (based on GFCC data) as outcome 
variable, tiles in grasslands biome 

 
Source: author’s calculations based on the ARD, GFCC, and RESOLVE data. Regression uses sample of tiles measured at 0.01° 
resolution. Robust standard errors are clustered at the buffer level.  95% confidence intervals displayed with dashed lines
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 Appendix A7 reports the results of the placebo test in which I estimate the main results 

using only sample tiles with 50 percent forest cover or more in 2000. The extensive margin 

results of this robustness check closely resemble the estimates in Table 3. Intensive margin 

estimates are higher, but mean forest cover at baseline is also higher, and as in the main results, 

the estimates represent an 0.8-1.4 percent reduction relative to the sample mean for each year of 

refugee camp exposure. 

 Appendix A8 reports the coefficient estimates collected from iteratively drawing a 

random subset of the new comparison group sample and estimating the main results. Across 

almost all specifications and outcome variables, the results of this robustness check closely 

mirror the main results. This suggests that the 21-30 km area from camps served as a valid 

comparison area, given the similar performance of the two comparison groups.  The one 

exception is with intensive margin changes in rainforests, shown in Figure 6: the coefficient 

magnitudes are slightly larger than those derived in the primary analysis (Table 4 4), though 

they still constitute reductions of less than one ppt. per year. 
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Figure 6: Distribution of coefficient estimates for Equation 2 with percent forest cover as 
the outcome variable (based on GFCC data) using comparison tiles from buffers with 
centroids 100 km from the nearest camp, tiles in rainforest 

 
Source: author’s calculations based on the ARD, GFC, and RESOLVE data. Regressions use 
primary sample of tiles measured at 0.01° resolution and drop all tiles 21-30 km from a refugee 
camp. Comparison tiles are randomly drawn from 30 km buffers with centroids at least 100 km 
from an ARD camp location. Regression is estimated 100 times to obtain distribution of 
coefficient estimates. Robust standard errors are clustered at the buffer level. 
 
 
 
 
 4.4 Discussion 
 
The statistically significant association between camps and avoided extensive margin forest 

losses in rainforests may correspond with the increase in vegetation density observed by 

Maystadt et al. (2020). In both cases, these gains are very small in magnitude and may not be 

economically significant. But it remains possible that under certain circumstances, camps may 

reduce the returns to harvesting forest products, either because they impact the agricultural wage 

(and by extension, the opportunity costs of harvesting from forests) or because an augmented 

security presence around camps increases the risks of illegal logging. Testing these theories 
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would require more information about agricultural prices and the spatial distribution of illegal 

forest harvesting activities. 

 Building on the findings in Maystadt et al. (2020), I show that camps are associated with 

small intensive margin forest cover losses. On average, I find that camp exposure leads to annual 

forest cover losses amounting to less than one percentage point. These losses typically represent 

a 0.6-1.4 percent loss relative to the sample mean. Perhaps refugee forest extraction explains a 

considerable share of these modest losses. But I find significant impacts 15-20 km from camps, 

distances that refugees are unlikely to reach. And given the small magnitudes of the changes, the 

economic significance of these findings is questionable. These results challenge the 

preconception that refugees fuel extensive deforestation in camp areas. 

The modest evidence of forest loss stands in contrast to the main finding in Maystadt et 

al. (2020): they argue that increases in a tile’s refugee camp population greatly augments the 

likelihood that the sample tile experiences both a reduction in forest cover and an increase in 

crop cover over time. The discrepancy is likely due to the different approaches of the two 

studies. As mentioned, the underlying camp data differs, and this could explain difference to 

some extent. But without access to UNHCR internal data, I cannot test for this directly. The 

different spatial resolutions and econometric approaches of our analyses likely contribute to 

discrepancies in our findings. Maystadt et al. (2020) use very large spatial tiles (111x111 km) to 

estimate impacts, meaning they may pick up spurious changes unrelated to camps that coincide 

with their growth. Moreover, some of the forest loss that they estimate may be due to the 

clearing of the camp area itself, since their study does not try to omit camp areas. My study 

attempts to omit these areas and removes refugee settlements entirely to ensure that the estimates 

reflect the impact of camps on their surrounding landscape.  

 It remains possible that camp populations degrade the landscape in other ways that do not 
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lead to deforestation. Refugee extraction of forest products such as firewood may not require the 

felling of living trees, but more likely involves the collection of already dead wood. The 

resulting clearing of the canopy floor may not impact how the canopy appears in remote sensing 

imagery, but it will impact biodiversity as habitats become increasingly degraded.  

 

5. Conclusion  

This study examined the impact of refugee camps on the landscapes surrounding them. 

Exploiting variation in camp operational years and defining camp exposure based on Euclidean 

distance to the camp, my difference-in-difference estimates suggest that camps have a very small 

negative impact on intensive margin forest cover 1-20 km from camps. Future work can expand 

on this finding using a spatially explicit examination of intermediate outcomes driven by camp 

exposure, such as host population growth. Such intermediate outcomes may help explain why 

camps lead to modest forest losses at such distances from the camp. 

 The current study was unable to explore heterogeneity by country-level policies that 

influence refugee mobility in and out of camps and refugees’ rights to work. Our understanding 

of how camps influence the environment would be enhanced by estimations that account for 

country policies. This would also provide additional information on whether illiberal hosting 

policies actually protect landscapes.  

 Refugees often serve as scapegoats for host governments and host communities 

(Baylouny, 2020). Pejorative misnomers about refugee impacts have the potential to fuel conflict 

between refugees and hosts (Martin, 2005), and they also provide bad faith host governments 

with pretexts to deny entry to asylum-seekers (Black, 1998). Future studies of refugee impacts on 

the environment are needed, as this work provides policy-relevant evidence to the stakeholders 

who seek to protect both refugees and the environment. Moreover, such research performs the 
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important function of testing beliefs that too often make some of the world’s most vulnerable 

people even worse off. 
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